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OUTLINE

» PART 1 (Wooyoung Jeon)

» Optimal hourly use of storage to minimize daily system costs
» Exogenous wind generation
» No network or reliability standards

» PART Il (Alberto Lamadrid)

» Optimal hourly use of deferrable demand at 5 load centers to
minimize the expected daily system costs

» Optimal hourly use of storage collocated at 16 wind sites to
minimize the expected daily system costs
» Stochastic potential wind generation at 16 sites
» NE Test Network (36 buses) with contingencies

» PART Il (Alejandro Dominguez-Garcia)

» Manage distributed resources locally in a hierarchical structure
to deliver aggregated energy services efficiently
» Use only information exchange among immediate neighbors

:: 1 Cornell University C E RTS
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An NSF I/UCRC

PART I:
Optimize Hourly Storage with
Exogenous Wind Generation
and No Network




Demand for Electricity in New York City

for a hot summer day (7/16/10) An NSF UUCRC

11000

I Cumulative Base Demand over
24 hrs: 208 Gwh
1« Cumulative Temperature-Sensitive

7000 T Demand (TSD): 74 Gwh
jzzzﬂ | + TSDis 35% of the cumulative

ool | demand (and 35% of the peak
W | systemload)

2000] | » Consistent with EIA data (30% of
1000} - the total electricity demand is used
0 : - & 55 »  for cooling during the summer)

Hour

10000 ¢

9000 |

8000 |

MWh

Use an econometric model to distinguish Temperature-Sensitive
Demand (TSD) from Non-Temperature-Sensitive Demand (NTSD)
TSD is a potentially large source of deferrable demand
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PSERC

Simplified Optimization Criterion

Mz ER-CG+ RE-[ACG|- pus FEIS — Nlanage storage capacity to
minimize the daily cost of
energy and ramping to meet
SCLPh,tS;Ph:S SCUrni, T'=1,...,24 (Ioad — wind generation)
Linear cost function for energy

HCLw' < Th' < HCWn's, YV t=1,...,24
HCLn < Thi< HCUvv VE=1,....24 Linear cost function for ramping
Cooling demand can be met by AC

t=1
T' T'
SCLm< Y Th'i=Y Th < SCUn, T'=1,...,24
=0 =0
.

HCLen:< Ph< HCUny, YV t=1,...,24

0N Th' =Y Th' V=124 and/or thermal storage (deferrable
t=0 t=1

Co - Th < IS, Vi=1,..,24 demand)

Li=["+15 - AC can be used to charge storage

1€ = Cor -Th 1+ AC, during off-peak periods at night

CGi=Li—Wi+Cn" -Th" = Cm -Th ++ Hwac- Ctn -Th ++ DP- Cpn- Ph
=L+ L%=Com -Th =W+ Cni" -Th* 1+ Hvac- Cti - Th t+ DP- Cei- Phi
=L+ ACi—Wi+Cn" -Th* 1+ Hwae- Ci” - Th 1+ DP- Cpi- Phs

EP.=a+b-CG

RP:=c-EP.-|ACG|
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Glossary for the Optimization

EP :Energy Priceat t

RP : Ramping Priceat t

L :BaseLoadatt

W, :Wind Load at t

Th, : Load stored or discharged by THERMAL Storage at t
Ph, : Load stored or discharged by PHEV Storage at t
C,, : Charging Efficiency of THERMAL Storage
C,, : Charging Efficiency of PHEV Storage

AC: : Air Conditioning Load at t

LY : Load for Non-Cooling at t

L% : Load for Cooling at t

FEIS : Final Energy In Storage

DP : Driving Profile

SCL:Storage Capacity Lower bound

SCU:Storage Capacity Upper bound

H CL:Hourly Charging Lower bound

H CU:Hourly Charging Upper bound

a,b:estimated from market data

:Scaling parameter for Ramping Price !
| ' Corne l%nivcrsity ping 406 CERTS

7 ConsorTIuM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS




The Effect of Adding Storage Capacity
on Total Conventional Generation

1000 B - INPUT ASSUMPTIONS

 Opton, S0 - Daily demand for a typical

T Opimuan, 156Wn summer day in New York City

 —— - Total Conventional Generation

= Load — Wind Generation

= Net Load

- Wind data are from NREL -
hourly variability of generation
and less wind during the on-peak
period in the daytime

- Wind capacity is 2GW (20%
of the Peak System Load that
provides 12% of the total

s000) . . . . daily generated energy)

5 10 15 20 25
Hour

CONCLUSIONS - Adding storage (deferrable demand)
1) flattens the daily pattern of conventional generation - lower peak load
2) mitigates the variability of wind generation - less ramping by conventional sources
3) reduces the day/night price arbitrage - need other economic incentives

CERTS
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Hourly Energy Purchased and Consumed  [i3585
(10GWh of Storage)

Energy Purchase ($/MWh)

Actual Energy Purchase
11000

o Fnergy Consumed | | | - The energy consumed by

— Energy Purchased customers does not change

with deferrable demand

- The energy purchased =

| generation from wind +

conventional sources

1 - Deferrable demand -

1) More energy is purchased
off-peak at night and the
peak load is lower

2) Provides ramping services
to mitigate the variability
of wind generation

10300 |

1

10000 +

9500 +

9000 |

8500 +

8000 |

1

7500 t

7000
0

25
Hour
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Cooling Demand (MWh)

Composition of the Cooling Demand [j#iE%

Direct (AC) v Stored (THERMAL)

1000

800 +

o

[am]

o
T

nN

o

o
T

N

[am]

o
T

-200
0

—6—Load Cooling || - Deferrable Cooling Demand
MRl =6.2% of TSD

- AC delivers all cooling needed
at night (and charges the

T thermal storage)

- Mix of AC and thermal storage
deliver cooling during the day
AND reduce the ramping by
conventional generators

Hour

= Cornell University C E RT
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Pay for services used and get paid for
services provided - What happens?

Ramping Energy Total Total Average
Payment Payment Payment Energy Payment
($1000) ($1000) ($1000) (MWh) ($/MWh)
1) CD 2,120 18,920 21,041 214,911
2) WG 1,735 -2,154 -419 27,070 -15
3) CG -1,125 -17,236 -18,361 196,822 -93
4) DD -2,730 470 -2,261 12,296 -184

Buyers  (1)+(2)= 3,855 (1)+(4)= 19,390
Suppliers  (3)+(4) =-3,855 (2)+(3) = -19,390

- Positive (Negative) payments indicate Paying (Being Paid) for a service
- CD, Conventional Demand and DD, Deferrable Demand

- WG, Wind Generation and CG, Conventional Generation

- The System Cost of ramping is caused by ramping CG

- WG accounts for 11% of Energy Supply and 45% of Ramping Demand
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An NSF I/UCRC

PART II:

Optimize Hourly Storage with
Stochastic Wind Generation
and the NE Test Network Using
the Multi-Period SuperOPF

’ ornell University C E RTS
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North Eastern Test Network (NETNet)

PSERC

An NSF I/UCRC

Reduced NPCC System (Allen, Lang and llic (2008))
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PSERC

NREL Wind Site Clusters (EWITS)

An NSF I/UCRC

New England

AToront
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0/Google s
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Modeling the Inherently Stochastic

Behavior of Potential Wind Generation

MW injections
A

Steps:

1. Select a sample of days (24
hours) using NREL wind
speed data (EWITS) for 16
sites in New York State and
New England

2. For each hour of the day,
use the K means algorithm
to pick K representative
wind speeds (scenarios)

3. Assign the sample days to
the nearest mean for hour t
and then estimate transition

i | : | B I probabilities from hour t-1
t t+1 t+2 t+3 t+4 e 4o hourtfort=1,2,....,24

central “high-probability” path
[] load following ramp up capacity

CERTS
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System Characteristics of the

NE Test Network ARNSF IUCRC
NYNE GENERATING CAPACITY Characteristics of Wind Input
Peaking (GW) 37
Baseload (GW) 26 Wind/conventional capacity 48%
Fixed Imports (GW) 3
TOTAL (GW) 66 Capacity factor of wind 21%
New Wind (GW) 32
Storage Capacity (GW) 23 Expected potential wind generation
Storage Energy (GWh) 136 could supply 13% of the daily energy
Peak Load (GW) 60 n db {
Average Load (GW) 49 purchased by customers

Case 1: No Wind: Initial system
Case 2: Wind, 32 GW of wind capacity at 16 locations added.

Case 3: Case 2 + Deferrable Demand (DD) at five load centers with a
total capacity of 23GW (136GWh)

Case 4: Case2+ Energy Storage System (ESS) collocated at the
wind sites with a total capacity of 23GW (136GWh)

A -” \ Cornell University C E R S
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Summary of the Optimum Results

An NSF I/UCRC

"l (=] )] Cornell University

Casel Case 2 Case 3 Case 4
E[Wind Generation] MWh - 137,518 147,732 153,091
E[Net System Benefits] (kS/day) 8,885,100| 8,896,269 9,112,041| 8,998,212
E[Operating Costs] (k$/day) 50,280 41,933 41,785 40,733
E[Ramping Costs] (kS/day) 499 1,383 1,104 1,068
E[Gen. Net Revenue] (kS/day) 77,183 52,528 53,804 53,328
E[ISO Surplus] (kS/day) 8,477 8,837 -5,133 8,163
E[Payments by Customers] (kS/day) 135,940 113,430 102,829 114,823
Max Conventional Capacity (MW) 58,550 57,004 50,919 58,310
Storage Discharge at Peak (MW) - - - 4,751

COMPARING THE FOUR WIND, CASES 24

- Little difference in E[Operating Costs] and in E[Ramping Costs]
- Little difference in the E[Generator Net Revenue]
- E[ISO Surplus] is lower in Case 3 because there is much less congestion
- E[Payments by Customers] are also lower for Case 3
WHY IS DEFERRABLE DEMAND (CASE 3) THE BEST FOR CUSTOMERS?

- Peak Generating Capacity (conventional MW for System Adequacy)) is lower

17
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Hourly Dispatch of Wind and Prices

PSERC

An NSF I/UCRC

Total Dispatch of Wind Generation, E[MW)]

Expected Dispatched, All Wind Generators
T T T T T T

9000 -
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7000

Z 6000

Dispatch MW

[
en
s
=

>
< 50001

4000 —

3000~

The main differences in dispatch occur

from midnight to 5:00AM: Case 2 has the
largest amount of wind spilled

9 Cornell University

Nodal Prices Paid for Wind, E[$/MWHh]

Expected Prices Paid, All Wind Generators
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Deferrable demand and ESS reduce the
range of nodal prices by mitigating wind
variability and flattening the load profile

CERTS
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Hourly Payments to Wind Generators

An NSF I/UCRC

Total Payments, E[$100,000]/hour

Income for All Wind Generators

Pmt. to Wind for Pg $

Similar revenues during

the daytime for Cases 2-4
Case 2

Nodal prices driven down
to zero at 4.00AM

Case 2u

Nodal prices higher at night
with no congestion

Case 3

Higher system load at night
increases the nodal prices

Case 4
Wind generation stored at
night does not reduce the

nodal prices but still gets paid

CERTS
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Composition of the Optimum Daily

E[Pattern of Generation] for Cases 1 and 2 e

Case 1: Base Case 2: Base + 32GW Wind

x 16" Expected Dispatch per Fuel Type x10° Expeced Dlspatch per Pnel 'l'\'pe

MW
IS

\\‘-,‘ \
MW

E[Dispatch] per fuel type, MW
‘e ("™
E[Dispatch] per fuel type, MW
[

- 6 8 10 1329:?”“ 16 18 20 2 Zn:. ) i .2 4 ] 8 10 ;izo.u-:ml-i 16 18 20 2 24
Case 1
Ramping for the daily load profile is provided by oil and natural gas capacity
Case 2

Wind displaces mainly oil and natural gas capacity and this capacity also
.. provides additional ramping services to mitigate wind variability

W Cornell University CERTS
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Composition of the Optimum Daily
E[Pattern of Generation] for Cases 3 and 4 s

Case 3: Base + 32GW Wind Case 4: Base + 32GW Wind
+ 136GWh Deferrable Demand + 136GWh Collocated Storage
Gl — T N et e b

A

4
T

E[Dispasch] per fuel type, MW
ra .

E[Dispasch] per fuel type, MW
ra

g 10 12 14 16 18 20 2 24
Hour
Anls

Case 3 v Case 2

More wind is dispatched and the daily load pattern is flatter (lower peak energy)
Case 4 v Case 2

Even more wind is dispatched but the peak energy delivered is unchanged

‘ Cornell University ‘ ERI S
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Why isn’t Storage used more for

Peak Shaving/Valley Filling in Case 4?

Case 4: Base + ESS Case 4: Base + ESS
with STOCHASTIC WIND with DETERMINISTIC WIND

Expected Dispatch per Fuel Type

=10
60—

Expected Dispatch per Fuel Type =10*

z z
=4 =
% I Nuclear % [ Nuclear
b I I(':Iy;dlro = I Hydro
2 ¢ - [ JCoal
=3 NG =3 CING
E. CJoil g Coil
.{:3 I Wind % I Wind
=S CD ‘é CD
A, 2
82 B2
m m
1 1
0 2 4 6 8 10 12 14 16 18 20 22 24 0
I‘i = - - 2 4 6 8 10 12 14 16 18 20 22 24
ou=r . e Hour
h=19

With stochastic wind, it is optimum to use storage mainly for ramping

Still true if ramping costs are set to zero - a physical ramping reserve is needed
With deterministic wind, it is now optimum to use storage mainly for

peak shaving/valley filling > STOCHASTIC INPUTS MATTER!

T\
] Cornell University C E R l S
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Next Steps for Research Using

the Multi-period SuperOPF

« Extend the analysis to cover operations for a full year to
evaluate the Total Annual System Costs, including capital costs,
and the Net Benefits of different cases

 Use a combination of the stochastic characteristics of loads as
well as potential wind generation as inputs

* Model the physical characteristics of storage and deferrable
demand explicitly to provide more accurate constraints on the
aggregate demand for and supply of energy services at nodes

« Model the behavior of Aggregators of Residential Customers
(ARC) explicitly to compare the performance of a hierarchical
structure of control for Distributed Energy Resources (DER)
versus centralized control by a system operator

« Compare the performance of a rolling time horizon with non-
binding price projections versus the day-ahead/ real-time market
structure currently being modeled

:: 1 Cornell University C E RTS




An NSF I/UCRC

PART lil:
Manage Distributed Resources
Locally to Deliver Aggregated
Energy Services Efficiently
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Enabling Distribution-level Markets:
Interaction between DSOs and DERs

« Study of suitable communication/control architectures that would enable the
implementation of the distribution-level portion of an envisioned hierarchical
market structure; two potential solutions:

— Centralized architecture in which each Distributed Energy Resource (DER) is
directly controlled by a Distribution System Operator (DSO):
* Requires a communication network connecting DSO with each DER

* Requires up-to-date knowledge by the DSO of DER availability on
the distribution side

— Distributed architecture potentially offers several advantages:

- Easy and affordable deployment (no requirement for communication infrastructure
between the DSO and various DERS)

* Ability for the DSO to handle incomplete knowledge of the available DERs
+ Potential resiliency to faults and/or unpredictable DER behavior

T Cornell University C E RTS
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The (Perhaps Naive) Starting Point:
DER Economic Dispatch (ED)

An NSF I/UCRC

« Consider n DERs with constraints on the amount of active (or reactive
power) they can provide

* Denote by X the total amount of active (or reactive power) they need to
collectively provide (i.e. demanded by the DSO)

* Assume the cost of each DER is quadratic. Then, the DER ED problem
can be formulated as:

n 2
... (:l.’.j — Clj)
minimize E -
Jj=1
mn
subject to E T =
J=1
0<z; <x; <7Ty, V9
’ g'; ? Cornell University C E RTS
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A Distributed Solution to the DER ED
Problem [D-G, Cady, Hadjicostis, ‘12]

An NSF I/UCRC

* The objective is to solve the DER ED problem without relying on the
DSO having access to all the data defining the problem; instead, the
computations are distributed as necessary to solve the problem

 To this end, we assume that each DER is equipped with a processor that
can perform simple computations, and can exchange information with
neighboring DERs.

— In particular, the information exchange between nodes (DERs) can be
described by a directed graph

4 :’;_” 3 \‘ ; }.-."'-.. .. o - \'Q/,,"
Experimental validation: DER Communication

Exchange of information between and computation hardware
the DERs and the DSO

Cornell University C E RT
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